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ABSTRACT

High-quality, multispectral thermal infrared sensors can, under certain conditions, be used to measure more than one surface
temperature in a single pixel.  Surface temperature retrieval in general is a difficult task, because even for a single unknown
surface, the problem is under-determined.  For the example of an N-band sensor, a pixel with two materials at two
temperatures will, in principle, have 2(N+1) unknowns (N emissivities and one temperature for each of two materials).  In
addition, the upwelling path and reflected downwelling radiances must be considered.  Split-window (two or more bands)
and multi-look (two or more images of the same scene) techniques provide additional information that can be used to reduce
the uncertainties in temperature retrieval.  Further reduction in the uncertainties is made if the emissivities are known, either a
priori (e.g., for water) or by ancillary measurements.  Ultimately, if the number of unknowns is reduced sufficiently, the
performance of the sensor will determine the achievable temperature sensitivity.  This paper will explore the temperature
sensitivity for a pixel with two temperatures that can be obtained under various assumptions of sensor performance,
atmospheric conditions, number of bands, number of looks, surface emissivity knowledge, and surface composition.  Results
on synthetic data sets will be presented.
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1.  INTRODUCTION AND GOALS

The multispectral information available from modern thermal infrared sensors (e.g., ASTER or MODIS) can be, under
certain conditions, used to measure more than one surface temperature in a single pixel.  This information can be used in
water-only pixels to pick out the edges of a thermal plume or, potentially, to retrieve water temperature for mixed land-water
pixels.  The latter is particularly useful for narrow water channels, where a significant portion of the water surface is
contained in mixed land-water pixels (see Fig. 1).  All shoreline pixels are necessarily composed of land and water – thus
subpixel temperature retrieval can be used to measure water temperatures on shorelines or for smaller bodies of water.  The
fraction of shoreline pixels obviously increases for instruments with larger ground-sample distances.

This paper describes a method to extract temperatures for materials that occupy less than a full pixel.  The present results are
for simulated scenes and no atmospheric effects are included (although a method is outlined for providing the corrections).
The method requires reasonable knowledge of water and land emissivities and an independent means of measuring the areal
fractions of each pixel occupied by the two materials (the sensors discussed below can measure the areal fractions with other
bands).  The sensitivity of the results to detector noise and calibration error is presented.

Studies of fire or volcanic plume temperatures have been undertaken by Green (1996), Oppenheimer et al. (1993), and Prins
& Menzel (1992).  The first two papers use the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) to study biomass
fires and volcanic hot spots, respectively.  The third paper uses the Visible Infrared Spin Scan Radiometer Atmospheric
Sounder (VAS) to study biomass fires.  These papers present methods to measure relatively high fire temperatures in
hyperspectral data extending to 2.5 µm (the first two) or with a thermal infrared multispectral sensor (the latter paper).  In
contrast, this paper explores the possibility of measuring temperatures of two materials near 300 K using multispectral
thermal infrared data, with emphasis on temperature retrieval accuracy.  An important feature of the present method is that
other bands within the sensor are used to determine the areal fractions each material occupies with the goal of reducing
overall temperature errors (the papers cited above outline methods that attempt to retrieve the fractions and temperatures
simultaneously).  Dozier (1981) uses multispectral data to retrieve temperatures and areal fractions from multiple pixels.  The
present method is suitable for a single pixel, although data from multiple-pixels would be used for atmospheric corrections.
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A complimentary technique was described by Bellerby et al. (1998), who used microwaves to measure brightness
temperatures from coastal mixed land-water pixels.

2.  SCIENTIFIC BASIS

Retrieving even one temperature per pixel is a difficult task.  In the case of a uniform pixel at a single surface temperature,
the radiance measured at the top of the atmosphere (TOA) in a thermal infrared (TIR) band i is

LTOA
i = εiB i(Tsurface )τ atm

i + Lupwelling
i + Ldownwelling

i (1- ε i )τ atm
i

  
, (1)

where εi is the emissivity in the band i, Bi is the Planck function averaged over band i, Tsurface is the surface temperature (the
goal of the measurement), τatm

i  is the atmospheric transmission in band i, and the last two terms are the upwelling and
reflected downwelling radiances in band i.  The basic problem is that there are N measurements, but at least N+1 unknowns
(the N  εi emissivities and one temperature, Tsurface).  Furthermore, in a mixed pixel there are in principle 2(N+1) unknowns.
This ignores the unknown atmospheric state’s effect on the upwelling and downwelling radiances.  In the case of a water
temperature retrieval, the emissivities are known, and Tsurface can be robustly retrieved (see Borel et al. (1999)).

Often there are several additional pieces of information that can be used, such as multiple looks at a given scene (nadir and
some other angle).  Information from these multiple looks can be used to eliminate some atmospheric effects.  Also, day and
night image acquisition allows one to look at the same scene under different thermal conditions (well into the night, the
temperature difference between materials with different emissivities may reverse from its daytime bias).  In the case of
ASTER and MODIS, one can take advantage of images acquired in the visible and near IR (VNIR) that have a 4x or 6x
smaller ground-sample distance.  These images can be used to identify mixed TIR pixels and measure the fractions of a
mixed pixel that are different surface types (e.g., define a land-water boundary).  Clearly this problem is difficult enough
without considering more than two temperatures per pixel.  Thus, two cases will be considered in this paper:

1. Retrieving temperatures from a pixel containing two materials with substantially different, but known,
emissivities.  Most of the results in this paper are for this case.

2. Retrieving temperatures from a pixel with a single material at two different temperatures (for example, a pixel
that is homogenous in composition, but partially in shadow, or a thermal plume in water).
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Figure 1. Pixels superimposed on a scene.  Note that the land-
water mixed pixels have many different water fractions.
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Figure 2. The definition of a mixed pixel in terms of
areal fractions, temperatures, emissivities, and radiances.



3.  THE PHYSICAL MODEL

3.1  The radiance from a mixed pixel

The top-of-the-atmosphere (TOA) radiance emitted by a mixed pixel in band i is (assuming the independent-pixel
approximation, i.e., no coupling between the subpixels, which is a very good approximation in the TIR)

Lmixed
i = f1ε1

iB i(T1) + f2ε2
i Bi(T2)( )τ atm

i + Lupwelling
i + Ldownwelling

i (ri)τatm
i

, (2)

where ri is the reflectance of the mixed pixel, f1 and f2 are the areal fractions of the pixel that are at temperatures T1 and T2,
respectively, τatm

i  is the atmospheric transmission, the ε’s are emissivities, and the B’s are band-averaged Planck functions
(see Fig. 2).  Note that the temperatures, emissivities, and atmospheric transmissions are effective values because of band-
averaging.  Reflected, downwelling radiance will be a small effect for high-emissivity natural surfaces and will be ignored
here. If the emissivities are known with some error and the fractions f1 and f2 can be determined from spatial cues in the
visible or input by a data analyst, then there remain 2N+2 unknowns (the upwelling radiances and atmospheric transmissions
for each of N bands and 2 temperatures) and the N TIR band measurements.  Therefore, some atmospheric model is needed.
Upwelling radiance and atmospheric transmission can be parameterized for the five TIR bands as a function of columnar
water (CW) and effective atmospheric temperature Tatm_eff. A consistent set (i.e., a set that produces smooth temperature
values) of the CW and Tatm_eff values can be produced using a physics-based temperature retrieval (Borel (1999)).  The
physics-based temperature retrieval would be applied over a set of pixels that are believed to have a single, uniform
temperature.  Thus, if the CW and Tatm_eff are determined from an independent set of pixels in the same scene, the 2N+2
unknowns are reduced to the two temperatures, with radiance measurements in N bands.  Further atmospheric information
from a multiple-look maneuver could also be used.

With the approximation outlined above, the measured radiance from a mixed pixel is

Lmixed
i = f1ε1

i Bi T1( ) + f2ε2
i Bi T2( )( )τatm

i CW( ) + B i Tatm _ eff( ) 1− τatm
i CW( )( )  . (3)

In this model τatm
i is a function of columnar water (CW) and the second term has been substituted for the upwelling radiance.

Using the CW and Tatm_eff values from the physics-based temperature retrieval, a new quantity is defined

Lreduced
i =

Lmixed
i − Bi Tatm _ eff( ) 1 − τ atm

i CW( )( )( )
τ atm

i CW( ) = f1ε1
iBi T1( ) + f2ε2

i Bi T2( )  , (4)

which can be fit for T1 and T2, given some knowledge of the emissivities and the fractions f1 and f2.  Note that the fit is easier
if the two emissivities are not equal, provided they are known, because there is more structure from band-to-band to separate
the two terms in equation 4.  The algorithm outlined here is illustrated in Fig. 3.  As an aside, an alternative approach may be
useful, which is to introduce the concept of “virtual cold”, developed by Gillespie et al. (1990), to further aid in the unmixing.



3.2  Modeling results

To test these ideas, scenes with mixed land-water pixels were simulated.  Atmospheric effects were not included in this
simulation.  A synthetic river scene was created with riverbank pixels that are partly land and partly water (see Fig. 4).  The
radiance, Lreduced  from mixed pixels in the scene was modeled with equation 4.  Smearing due to the detector noise,

calibration errors, emissivity uncertainties and/or areal fraction
errors was added.  All errors are uncorrelated and enter into the
simulation identically.  Calibration errors and detector noise
were added at typical levels according to the ASTER and
MODIS specifications and some hypothetical cases (MODIS,
1999; ASTER 1999; Gillespie, 1996).  The ASTER and
MODIS thermal infrared bands used in the analysis are shown
in Tables 1 and 2, respectively.  If the VNIR bands have a 4x
smaller ground-sample distance (GSD), then the pixel area is
16x smaller (~6%).  Thus, an areal fraction error of ±3% rms is
used in this analysis (ASTER has 6x smaller VNIR GSD and,
therefore, a somewhat smaller areal fraction error).  The water
emissivities in all spectral bands are assumed to be well-known
and are assigned no error.  This last assumption in effect limits
the method to water surfaces in the presence of low wind
speeds, as the emissivity change with surface roughness is not
taken into account.  Land emissivity uncertainties are included
by retrieving the temperature using the average emissivity of
eight different soil types from the Salisbury (Salisbury and
D’Aria, 1992) database.  The TOA radiance from each pixel is
simulated by randomly choosing among the eight soil types.
No vegetation was included in the simulations.

Figure 4.  Simulated river scene.  The water temperature scale
is shown on the right (in K).  The land temperature is uniformly
285 K.  The pixels analyzed are located along the river
shorelines, corresponding to mixed land-water pixels.

Figure 3. Subpixel temperature retrieval algorithm.



The simulated radiances in multiple bands emitted
from mixed pixels in the river scene were fit to
Lreduced .  At this point, of course, the original
values have errors added and the fit will not be
exact.  Pixels within the scene are categorized
according to what fraction of each is water.  Water
temperatures will be the emphasis of this work, so
pixels with less than 30% water were not
considered.  Pixels containing more than 90%
water are not considered mixed pixels and are not
a part of these results.  Thus, pixels analyzed are
30%-90% water and 10%-70% land, and the
results for land temperatures are necessarily worse
than for water temperatures.

Typical fit results are illustrated in Figs. 5 and 6.
Fig. 5 shows the chi-squared distribution for a
series of fits of Lreduced to approximately 100
mixed pixels in the river scene.  Fig. 6 shows the
output temperature error distributions for the same
simulation.  Note that the results discussed below

Figure 5.  Chi-squared distribution for all the mixed-pixel fits in a single
simulated river scene (for the MODIS sensor with detector noise of 1.5%
and SNR of 200).

Figure 6.  Distribution of errors in the water-temperature retrieval for
mixed land-water pixels.  This histogram is for the same scene described in
Fig. 5.

Table 1. The ASTER thermal infrared bands. All of
these bands were used in the simulations (ASTER,
1999).

ASTER Thermal IR Bands

Band Wavelengths (µm)

10 8.125 – 8.475

11 8.475 – 8.825

12 8.925 – 9.275

13 10.25 – 10.95

14 10.95 – 11.65

Table 2. The MODIS thermal infrared bands.  All these bands were used in the simulations (MODIS, 1999).

MODIS Thermal IR Bands

Band
Number

Wavelengths (µm) Band Wavelengths (µm) Band Wavelengths (µm)

20 3.660 - 3.840 27 6.535 – 6.895 32 11.770 – 12.270

21 3.929 – 3.989 28 7.175 – 7.475 33 13.185 – 13.485

23 4.020 – 4.080 29 8.400 – 8.700 34 13.485 – 13.785

24 4.433 – 4.498 30 9.580 – 9.880 35 13.785 – 14.085

25 4.482 – 4.549 31 10.780 – 11.280 36 14.085 – 14.385



should be considered representative, with the trends being significant, and the temperature results being reliable to 10-20%.
In other words, because of the random inputs used to simulate statistical errors, if the same scene is simulated 10 times, the
resulting rms temperature error will vary by 10-20%.

Results for the ASTER and MODIS sensors were obtained by utilizing approximate values for calibration error and detector
noise in the simulation and analysis (MODIS, 1999; ASTER 1999; Gillespie, 1996).  The results for the ASTER sensor are in
Table 3.  It should be noted that the ASTER sensor was not designed for this type of retrieval, and whole-pixel temperature
retrievals, including the difficult land temperature-emissivity separation, are expected to be very accurate (~1.5 K, Gillespie,
1996).  Better results for subpixel temperature retrieval are achieved if a hypothetical mid-wave infrared (MWIR) band were
added to the existing long-wave infrared (LWIR) bands in the ASTER sensor.  A 'typical' MWIR band located from 3.66 µm
to 4.08 µm was added to the simulation, with results shown in the last two lines of Table 3.  Because both the SNR and
calibration errors are expected to be substantially worse in the MWIR, the last row is the most representative result.  No
reflected sunlight was added to the simulation, corresponding to a nighttime retrieval (the standard ASTER temperature
retrievals work during day or night).

It is clear that even a single MWIR band provides substantially improved accuracy for subpixel temperature-retrieval.  This is
no surprise, because the change in radiance for a given temperature change is much larger for a MWIR band than a LWIR
band (recall that for particularly low temperatures, a band at the shortest wavelengths would register little or no radiance).  To
illustrate this effect, consider the change in radiance emitted by a blackbody at 270 K vs. 300 K.  At 4.0 µm, the radiance is
0.19 w/(m2-µm-sr) at 270 K and 0.72 w/(m2-µm-sr) at 300 K for a change of 0.53 w/(m2-µm-sr), or a radiance ratio of 3.8.
At 10.0 µm, the radiance is 5.8 w/(m 2-µm-sr) at 270 K and 9.9 w/(m 2-µm-sr) at 300 K for a change of 4.1 w/(m2-µm-sr), or a
radiance ratio of 1.7.  Of course, as pointed out above, the MWIR channels will generally have worse SNR than LWIR
channels (InSb MWIR detectors would generally have lower noise than HgCdTe LWIR detectors, but the signal levels in the
MWIR are proportionately even smaller).  Calibration is also more difficult for the smaller MWIR signal levels.
Nevertheless, it appears the MWIR bands are helpful for subpixel temperature retrieval.

Table 3.  Nighttime temperature retrieval results for mixed land-water pixels with simulated ASTER sensor data.  The rms
calibration errors and SNRs are listed for each run.  Note that the sensor is not designed for this type of retrieval, hence the
last two rows show the results if a hypothetical mid-wave infrared band were added to ASTER.

ASTER Sensor Parameters RMS Land Temperature
Error (K)

RMS Water Temperature
Error (K)

1.5% and SNR = 200 27 13

1.0% and SNR = 200 16 12

1.0% and SNR = 300 15 8.3

1.5% and SNR = 200 +
MWIR (with 1.5% cal error)

5.0 2.4

1.5% and SNR = 200 +
MWIR (with 3% cal error)

6.1 2.8

A similar analysis was performed for the MODIS sensor.  Again, approximate values for calibration error and detector noise
for the MODIS sensor (MODIS, 1999) were put into the simulation and analyzed, with the results shown in Table 4.  If the
as-built calibration errors for MODIS are larger than used in this simulation, the results would scale up accordingly (this is
particularly likely in the MWIR).  By comparing the MODIS results with the ASTER results including the hypothetical
MWIR band, it is evident that sensor performance plays some role in the accuracy of the temperature retrieval, but a larger
effect is due to the additional shape discrimination provided by one or more MWIR bands. In either case, MODIS is an
excellent sensor for subpixel temperature retrieval, because it has many thermal IR bands, good detector noise characteristics,
and good calibration accuracy.



Table 4. Nighttime temperature retrieval results for mixed land-water pixels with simulated MODIS sensor data.  The rms
calibration errors and SNRs are listed for each run.  The last row shows the result if the MWIR calibration error and SNR are
degraded.

MODIS Sensor Parameters RMS Land Temperature
Error (K)

RMS Water Temperature
Error (K)

1.5% and SNR = 200 3.9 1.5

1.0% and SNR = 200 2.8 1.2

1.0% and SNR = 300 2.3 1.1

LWIR: 1.5%; SNR = 200
MWIR:   3%; SNR = 100

4.0 2.7

To study the sensitivity of the results to a single source of error, the input value for the calibration error was varied and the
fits repeated.  The results are shown in Fig. 7, where no emissivity uncertainties or areal fraction errors are included, and the
error contribution due to detector noise is negligible.  It is clear that any significant uncertainty in the simulated radiances
leads to a substantial temperature retrieval error.  This is because much of the sensitivity of the fit is due to the shape of the
radiance spectrum.  The information 'pushing' the fit to the correct temperature is quickly lost, as errors in the radiance are
included.  In addition, land and water temperatures can compensate each other, with a higher land temperature somewhat
compensating for a too-low water temperature.  This compensation is most effective when the emissivities are similar - the
larger the difference, the more difficult it is for the compensation to occur.  These effects are further illustrated in Table 5,
where the effect of turning on the various sources of error is shown.

Figure 7.  This plot shows the onset of the rms temperature error as the calibration error is
increased from zero.  All other sources of error are zero in this plot.  Results are for the MODIS
sensor under the same conditions shown in figures 5 and 6.



Table 5. Nighttime temperature retrieval results for mixed land-water pixels with simulated ASTER sensor data.  These
results are for the ASTER sensor with hypothetical mid-wave infrared band added.  The rms calibration errors are 1.5% and
SNRs are 200.  Emissivity and areal fraction errors are described in the text.  Each succeeding line has an additional source of
error added to the simulation.

Errors Included RMS Land
Temperature Error (K)

RMS Water
Temperature Error (K)

None 0.03 0.02

SNR 1.8 0.5

SNR, cal. error 2.4 1.1

SNR, cal. , and areal fraction
errors

4.0 1.4

SNR, cal. , areal fraction, and
emissivity errors

5.0 2.4

3.3  A single material at two different temperatures

What can be done in the other situation, where a pixel contains a single material that is at two different temperatures?
Conceptually, one can consider extracting two temperatures in this situation, although the task is considerably tougher than in
the situation discussed above.  The governing hypothesis in this section is that the radiance produced in the thermal bands
from two Planck functions, Lmixed, is distinguishable, within errors, from the radiance produced by a single Planck function
(i.e., the radiance that would be produced by an entire pixel at a single temperature).  If these two situations can't be
distinguished, then there is no chance of retrieving two separate temperatures.  The extent to which this hypothesis is fulfilled
sets the limits of the method.  Note that a single material at two temperatures would generally have a gradient of temperatures
between the high and low values.  Because the pixels are large in the instruments considered here, a temperature gradient
over, for example, 10 meters would behave as an abrupt temperature change between two sharply-defined subpixels.

It is instructive to study the radiance as a function of wavelength for two situations: (1) a mixed pixel whose radiance is
described by two Planck functions at two temperatures (simulated using equation 2 with emissivities = 1.0 and no
atmospheric effects included) and (2) a single Planck function representing the radiance one expects if the pixel were pure.
The temperature used in the single Planck function is a straight average of the brightness temperatures in the TIR bands.  The
calculations are done using graybodies, so emissivity variation with waveband was ignored.  To further accentuate the
differences between pure and mixed pixels, take these ratios

Rmixed = Lmixed
long

Lmixed
mid           Rpure =

Lpure
long

Lpure
mid   , (5)

where ‘long’ and ‘mid’ refer to LWIR and MWIR bands, respectively.  Ultimately, the measurement errors in Rmixed must be
smaller than the difference

D = 1−
Rmixed

Rpure

 .  (6)

Using MODIS bands 20 (3.66 – 3.84 µm; the shortest wavelength MWIR band) and 31 (10.78 – 11.28 µm; a LWIR band
near the peak of the Planck function for terrestrial temperatures), f1 = f2 = 0.5, T1 = 300K, and T2 = 280K, Rmixed = 25.8, Rpure

= 27.9, and D = 7.4%.

Can D = 7.4% be detected with MODIS?  Assume the SNRs for these two bands are 200 and make the very important
assumption that the relative calibration of the MWIR and LWIR bands is 0.5%.  In this case, the error on Rmixed = 1.4%.
Thus, a mixed pixel with two temperatures of 300 K and 280 K has an observable deviation from the radiances observed



from a single Planck function.  Note that no explicit reference has been made to a specific material, but it is assumed that the
emissivities are known and uniform within the pixel.  Of course, many other sources of uncertainty are not considered,
including atmospheric effects, and no estimate of the temperature retrieval errors have been made.

4.  DISCUSSION AND SUMMARY

This paper discusses the information and assumptions needed to extract temperatures from pixels containing two materials at
two temperatures.  This is a difficult problem that requires substantial prior information (the emissivities) and information
from other bands in the sensor (to determine areal fractions).  Good sensor performance, including low detector noise and
good calibration, is critical in determining the ultimate subpixel temperature accuracy.  It also appears that MWIR bands are
very important to improve the sensitivity of subpixel temperature measurements.

The results from these analyses are quite intriguing, although far from comprehensive.  It is difficult to include in simulated
data all the effects encountered in real experiments, and, furthermore, these simulations have room for further refinement
(including atmospheric effects, for example).  Nevertheless, these simulations suggest that it is possible to extract
temperatures from mixed pixels, given the quality of modern sensors coming online.
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